The Mapping Principle, and a Research Framework for Virtual Worlds

Dmitri Williams
Annenberg School for Communication, University of Southern California, Los Angeles, CA 90089, USA

Virtual worlds have exploded in popularity and drawn attention from researchers as worth studying in their own right. An additional, more radical form of scholarship has also emerged, namely, using virtual worlds to study real-world behaviors. If valid, this would enable using virtual worlds as “petri dishes” for communication scholars. However, there are several necessary conditions to be met first. The most fundamental is the establishment of a “mapping principle,” or the extent to which behaviors in one space are consistent with behaviors in another. This article outlines the mapping principle, spells out potential misuses, and offers a systematic exploration of validity and reliability issues. With those laid out, a research framework for mapping is presented.

doi:10.1111/j.1468-2885.2010.01371.x

Virtual worlds are increasingly popular three-dimensional play spaces, in which players control a character to interact with others online (Castronova, 2005). They have been recognized as important sites of community (Ducheneaut, Moore, & Nickell, 2007; Steinkuehler & Williams, 2006) while they have grown to serve more than 47 million players in the West (White, 2008), with perhaps double that in Asia (Sheffield, 2008). Academic research into these spaces has taken two distinct approaches. The first is a simple attempt to understand the phenomenon: Who is in these spaces and why (Williams, Yee, & Caplan, 2008; Yee, 2006), and what kinds of computer-mediated communications (CMCs) are taking place there (Walther, 2006; Williams et al., 2006)? The second is a more radical form of scholarship. Recognizing that these are large-scale, complex, and highly social environments populated by thousands of people, some researchers have realized that they might present parallels to the offline, “real-life” (“RL” to many players) experience (Bainbridge, 2007). And if there is enough of a parallel between our online and offline worlds, tests of human behaviors in one might be able to tell us something about human behaviors in the other. This is the essence of “mapping.” Mapping is the phenomenon of a virtual behavior matching that of the offline parallel. As this article will explain in greater

Corresponding author: Dmitri Williams; e-mail: dmitri.williams@usc.edu
detail, this phenomenon offers immense theoretical and methodological potential, but cannot be assumed as a given. The goal of the article is to lay out the pitfalls and promises of mapping and to offer scholars a research framework for understanding the principle across a range of theories and approaches.

Studying mapped behaviors has several advantages over traditional communication approaches. Because these online worlds are far easier to change, tweak, and adapt than the real one, they represent a powerful new venue for communication-oriented inquiry (and for other social science or humanistic areas). Game spaces also have an advantage over more traditional computer modeling in that the artificial intelligence that drives the decisions in a modeling environment cannot (at least not yet) behave in fully human and social ways, complete with our intricacies, irrationalities, and unpredictabilities. Furthermore, the practical advantages of game spaces over real-world labs are potentially immense. For example, testing market forces in the real world is an experiment that risks the livelihood of millions of real people and changes the balance of power between them. Policy changes are, in effect, typically massive experiments without control groups. In an online space, that same test is comparatively low cost. This has been dubbed the “petri dish” approach to virtual worlds research, in which the worlds are altered and studied from the outside (Castronova, 2005, 2006; Williams, 2006). Ideally, they will also be measured in comparison to an unaltered control condition world, making the research a true controlled experiment.

The first handful of experiments have been attempted primarily by economics and educational researchers, usually in a more traditional game-based world. In some cases the researchers have had the ability to modify the world, but usually not. Communication scholars could unobtrusively test theories of group interactions, organizational theory, health communication, communication modalities, social capital, interpersonal behaviors, networks, and countless others. Already, an astrophysicist has explored the possibility of using virtual worlds to plot out a parallel version of the universe (Evrard, 1999). In her work on science learning among adolescents in a virtual world, Kafai has studied interactions and learning, with the occasional ability to have the world altered to test a principle (Kafai, 2008; Neulight, Kafai, Kao, Foley, & Galas, 2007). In one recent case, Castronova and colleagues implemented a treatment and control condition version of a single-player game to test economic behavior (Castronova et al., 2008). These initial outcomes beg an obvious question: Are these behaviors “real?” And by real, we mean: Are these behaviors similar to what we would observe had they occurred in the flesh and blood offline world? The implication is that we will eventually know when and how we might leverage virtual spaces to learn about human behaviors offline.

This is the mapping principle. Mapping is the extent to which human behaviors occur in virtual spaces in the same way they occur in real spaces. It is important to note that at this very early stage, mapping is not taken as a given. When starting from scratch, mapping is something that must be established, and most importantly, validated. It is a starting assumption that not all behaviors, not all virtual worlds,
and not all contexts within them—and perhaps only a small few—will truly involve mapping. Learning which ones do and which ones do not will be the ultimate goal in establishing virtual worlds as valid spaces to test human communication-based behaviors. Not only might interactivity vary from place to place but also the social architectures engendered by the world’s design will constrain and enable some kinds of behaviors at the expense of others (Kim, 2000; Yee, 2009). Indeed, because virtual worlds sometimes function like the real one and sometimes do not, it becomes crucial to understand their local contexts in a critical way.

A cautionary tale: Virtual plague

It is hard to overstate the importance of establishing validity. The case of the “Warcraft Plague” provides a cautionary tale and reinforces the importance of having a critical understanding of the world in question. A mistake by the game managers of World of Warcraft introduced the equivalent of a highly infectious disease into the game world. Players who had fought a particular monster were infected by it, and the virus was able to jump to any nearby player (Sydell, 2005; Ward, 2005). This virus was supposed to be time limited and constrained to one particular area of the virtual world, but an oversight by the developer allowed players to teleport back to busy cities with the virus. Once there, they infected the other players, typically killing everyone. This incident garnered academic attention because it offered a possible parallel to real-world epidemiological patterns (Balicer, 2007; Lofgren & Fefferman, 2007), yet some of these researchers took the mapping principle on faith, assuming that the virtual behaviors had fidelity to a real-world context. Some focused instead on the mathematics of the potential tests. The excitement is understandable: If virtual world-based reactions and disease vectors could be used to test how viruses spread and how people react to them, it would be a substantially safer way to test containment, disease vectors, and disaster readiness procedures than using a real virus in real space. Would players avoid others or infect them? Would information flow freely or become confused? Would first responders react appropriately? Would people act how they say they would in hypothetical situations given to them on surveys?

The problem was, and remains, that no one knows whether these behaviors map or not. Beyond whether the players would react in one way or another, the more important question for anyone who hopes to use virtual worlds to study diseases and disasters should be: “Do these behaviors have fidelity to the offline world?” That is, will players in a virtual space dealing with a deadly virus react as people would offline? This would of course be a necessary condition for any “petri dish” form of testing that might take place.

There are, unfortunately, several reasons to be suspicious of this. First and foremost, the risks and rewards of virtual worlds do not always map to those offline. The most obvious example is pain and death. In World of Warcraft, players die, but there is no physical discomfort. There is emotional discomfort, which may be
powerful in some circumstances, but it does not replicate actual nerve-induced pain. More importantly, although there is no real death in *Warcraft*, when a player dies, he or she can be resurrected. The cost is primarily to the ego. In other words, the risks do not map. It should not be surprising then that players reacting to the plague behaved in ways that on their face were clearly not mapping the offline world. Players were frequently seen dancing and laughing, and trying to hunt down and infect their friends. If the costs and emotional impacts had mapped to real life, the event might have offered enough similarity to real life to be of use to disaster managers and epidemiologists. As it was, the *Warcraft* case clearly did not provide the underlying risks and rewards to parallel the offline case of a disease outbreak. This is not to say that some virtual space might not achieve the sort of mapping required to truly simulate a disease outbreak. What it illustrates is the important need to understand mapping before moving forward with any test. To this end, there are two key necessary conditions to establish mapping. The first is validity, and the second is generalizability. Once those are explicated, it will be appropriate to present a research framework.

Virtual validity

Validity is at the heart of using virtual worlds to study real behaviors because of the most basic definition of the term: Validity is the extent to which an instrument measures what it is intended to measure (Carmines & Zaller, 1979). In virtual world research, the instrument might be the entire world, or some particular portion of it. The component types of validity are threefold: face, concurrent, and predictive validity (Stamm, 1989). Face validity is simply whether the measure appears, on its face, to measure the phenomenon in question. For virtual worlds, this test is dependent on the phenomenon. If the researcher is interested in studying the cultivation of perceptions about violence in media (Gerbner, Gross, Morgan, & Signorielli, 1994), the virtual world under examination should have some violence and variation within it. *Club Penguin* would lack face validity for such a test, while a violent fantasy MMO might have it (Williams, 2006). Face validity is the simplest, and most necessary condition, but it is not sufficient to establish validity.

Concurrent validity is the extent to which the measured phenomena correlate with other measures of the same phenomena (Stamm, 1989). The measuring instrument is checked against some present criterion (Wimmer & Dominick, 1997). For example, if a new test is designed to detect intelligence, giving it to a group of people who have been found by previous tests to be highly intelligent should yield higher scores than giving it to a group of people who had been found to have low intelligence. In the virtual case, this presents a new challenge. Because the virtual world is often self-contained, it cannot be measured with a parallel to the “real world” without leaving it. For example, an economist seeking to validate a measure of inflation for a virtual world might be tempted to calculate that measure and then say that because it has worked offline, the measure has concurrent validity. But the essence
of concurrent validity is a concurrent test in the same basic area. Therefore, it calls for another measure of a related activity also within the virtual world. In this case, a measure of virtual inflation should be able to predict when players will feel that prices are particularly high or low.

Related to, but distinct from, concurrent validity is the concept of reliability. In typical social science, reliability is the extent to which a measure will yield the same result when used more than once (Carmines & Zaller, 1979). The normal way of assessing this is to split a sample into two halves and see that the halves behave consistently. Virtual worlds’ work will require this same form of rigor and also introduces another wrinkle. Rather than thinking of the unit of analysis for reliability testing as the subject, these spaces allow for testing entire copies of the world itself. Many successful virtual worlds are broken up into copies (sometimes called “shards” or “servers”) to allow for the influx of more players without having to share virtual space. Even virtual cities can become overcrowded, but unlike real cities they can be copied into empty cities ready to handle the extra people. These parallel versions of virtual space offer a new way to test reliability in that results found in one copy should also be found in another. This kind of test–retest capability is striking. If the second copy of the space generates different outcomes than the first, then the test itself cannot be considered reliable. As noted below, this is a key reason to understand if or why one server might differ from another, perhaps based on rule sets, or because a distinct local culture has developed.

The final form of validity, predictive validity, is the most important of all for the mapping principle. Predictive validity tests whether a measure relates to other measures as expected. The virtual researcher has a double burden here. First, the measure must predict the appropriate outcome within the virtual world. Staying with our economist, it is not enough to detect inflation. The measure will only have predictive validity if it also correctly forecasts when spending patterns will change as a result of the inflation. The mapping principle introduces a second, additional test: For the virtual economist, detecting in-world inflation is only of use if that inflation behaves the same way we would expect of real-world inflation. For example, when prices rise, purchasing should drop, as has been observed many times in real space (Landefeld, Seskin, & Fraumeni, 2008; Smith, 1977). A measure of virtual inflation would only be valid if this parallel exists. The economic example is actually fairly easy in this regard because behaviors stemming from inflationary pressures have been well studied, that is, the offline parallel already exists. In that sense, the test is similar to those in the physical sciences where a model or simulator must function according to known, invariant real-world properties. An example is a scale model test of an ocean liner that must hew to the known properties of fluid dynamics (Rott, 1990). If it does not, there can be no predictive validity for related tests. But what if the test is something that is not well established in the real world? What if, for example, the economist wants to make predictions about what will happen to prices if all of the banks suddenly start charging negative interest to their customers, that is, borrowers suddenly made money? This scenario is feasible within a virtual space, but highly
unlikely in real space. For tests such as these, this predictive validity step may not be possible. It would be roughly similar to an animal trial of a drug that would be difficult to test on humans for ethical or practical reasons.

This form of predictive validity with virtual tests quickly approaches the concept of external validity, that is, how well the results can be generalized across populations, settings, and time. Although external validity is typically used to describe the extent to which lab research is valid outside the lab, it is germane here. In the virtual case, the virtual world becomes the lab, and the test is only externally valid once the pattern detected in the virtual world is also borne out in the real one. And as many have noted, labs are often not like the real world (Cook & Campbell, 1979; Webb, Campbell, Schwartz, & Sechrest, 1966). If a laboratory result cannot be replicated outside of the laboratory, it is relatively useless; the drug that cures cancer only in a petri dish cannot improve anyone’s health. So too, the result found within a virtual world that does not exist outside of it is useless. Worse, like the virtual plague case illustrated, it may be dangerous if taken seriously.

The most obvious defense against this issue is to make the virtual world as similar to the real one as possible with regards to the phenomenon in question. If a test involves human responses to risk, danger, love, velvet, sugar, or rewards, then the virtual version of these things must approximate the real one. Some of these may be more likely than others—it is currently more feasible to make a player feel danger in an online world than to taste sugar. The various potential confounds will need to be tested over time, but some are obvious even at this early stage. For mapping tests involving human communications, the people involved need to have the same kinds of relationships, interdependencies, contexts, and social networks as their offline versions. For example, if a test of the communicative practices of a virtual team is intended to map to a workplace team, then its members should have the same kinds of set up as the workplace. They should have the same kinds of prior engagement, the same forms of hierarchies, similar reward structures, and so on. For tests involving difficult choices, the risks, opportunities, and rewards need to be as close to real as possible as well (and notably, may face the same kind of institutional review board (IRB) scrutiny that the offline test would). For example, if a health communication risk-avoidance study wants to test sexual promiscuity among virtual partners, then the risks for promiscuity need to be as strongly felt as they are in real life. Of course, no virtual system is going to give a real-life player a sexually transmitted disease (STD), but in the hands of a creative experimenter it might deliver annoyances, barriers, and social shaming similar to the offline case, and empirically demonstrated to be experienced the same. The key to external validity would be whether the people involved perceived the risks and costs to be as powerful as those experienced offline. For questionable tests like this, a parallel predictive measure would be needed to serve as a virtual/real treatment check. Did a subject in the virtual test report the same levels of fear, danger, and social opprobrium as a subject in a parallel real-world trial did?

It is worth noting that some variables may not need to be controlled. For example, tests of economic behavior might not require storefronts and cash registers. These
are empirical issues that can be largely settled with tests of concurrent and predictive validity. If the tests had strong predictive power for offline economies (the mapping worked well), then it may not matter whether the storefront was a virtual medieval tavern or a virtual Walmart. Such predictive power would lower the need for stringent face validity.

The mapping research framework

It is an assumption of this work that not all virtual situations will map to the real. Indeed, it may be that a minority of virtual contexts will map. The goal of the rest of this article is to lay out how the research community should systematically explore mapping. The process laid out here becomes a roadmap for discovering which behaviors map, and which do not. The result of this collective effort would ideally be a rulebook of sorts to know what situations, contexts, levels of analysis, and types of human interactions can successfully be tested within virtual spaces, and which cannot. Using the framework, patterns of findings may emerge that suggest the presence of consistent underlying variables that lead to mapping or discourage it. There is another key reason to use this framework; at present, research on virtual worlds is only in its infancy, and there are few shared theories and few common practices. Researchers select worlds based on access, personal interest, and convenience (the author is no exception) rather than for some systematic purpose. Conclusions are drawn that may or may not apply to other virtual spaces, let alone map to the real world. For the field of virtual world research as a whole to make progress, it is important that there be synthesis between the handful of past studies and future work. This synthesis must coordinate the questions, the levels of analysis, and the different forms of virtual worlds. In an effort to organize the work within a larger research agenda, this article presents a proposed systematic framework resting within the tradition of CMC research. CMC is vital to any study of virtual worlds because all of the human interactions within them are CMCs by definition. No suite of theories is better able to address the practices now emerging in virtual communities.

CMC work has long sought to describe the human social experience when mediated through technology. The questions have been those previously explored in communications research: What are the effects on community, self-perception, group effectiveness, interpersonal psychology, media effects, and so on (Lowery & DeFleur, 1995; McQuail, 1994)? In each case, CMC researchers have asked the McLuhan-inspired (McLuhan, 1964) question of whether and how the new medium or new technology alters the fundamental patterns of human communication (Spears & Lea, 1992; Walther, 2006), group interactions, or individual behaviors. The work here is a direct extension of this tradition, substituting virtual worlds for now-older technologies such as e-mail and phones. It begins with the mapping principle, but can be used as an organizational template for any theory-based program of research on virtual worlds. The purpose of this framework is to answer the deceptively
Table 1 A Research Agenda for Virtual Mapping and Other Tests

<table>
<thead>
<tr>
<th>Group Size</th>
<th>Traditional Controls and Independent Variables</th>
<th>Contextual and Social Architectural Factors</th>
<th>Directionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Psychological profile</td>
<td>World size</td>
<td>Online to offline</td>
</tr>
<tr>
<td>Dyads</td>
<td>Motivations</td>
<td>Persistence</td>
<td>Offline to online</td>
</tr>
<tr>
<td>Small groups</td>
<td>Demographics</td>
<td>Competitive versus collaborative</td>
<td>Endogenous</td>
</tr>
<tr>
<td>Large groups</td>
<td>Communications medium</td>
<td>Role play</td>
<td></td>
</tr>
<tr>
<td>Communities</td>
<td>Network-level variables</td>
<td>Sandbox versus linear</td>
<td></td>
</tr>
<tr>
<td>Societies</td>
<td></td>
<td>Representation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>affordances</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Costs of a behavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local culture</td>
<td></td>
</tr>
</tbody>
</table>

simple CMC question: Do behaviors in virtual worlds map onto behaviors in the “real” world? If they do sometimes and not in others, what predicts the differences?

To answer these questions properly we have to spell out the several ways in which human interactions take place in virtual worlds, the several kinds of behaviors we are interested in, and the many contextual variables that make one virtual world different than the next. Spelling out these differences creates a framework that the community of scholars can begin (and in some cases has begun) to fill.

Table 1 provides the framework, breaking down the four major factors of group size, traditional controls and independent variables, contextual factors, and directionality. Any study of a virtual world should be able to identify where it sits in this table. This will allow meta-level understanding of the research by the larger community and allow researchers to couch their claims appropriately.

The first factor (column 1, group size) is straightforward. The unit of analysis of a study describes what level of the hierarchy the researcher is examining. Because virtual worlds are typically similar in their social structures to the real world, they also have collections of people ranging from individuals to very large groups. Group size is important to identify for the simple reason that some researchers tend to study large-scale community and society-level processes, while others are focused on individuals or small groups. For example, several studies have focused on why individual players choose to play (Ducheneaut, Yee, Nickell, & Moore, 2006a; Williams et al., 2008; Yee, 2006), while others focus on the characteristics of small groups (Bailenson, Beall, Blascovich, Loomis, & Turk, 2005) and still others are concerned with large groups or whole societies (Castronova, 2001). One study sought to lay out the distribution of these demographic group patterns (Ducheneaut, Yee, Nickell, & Moore, 2006b).
The point of the first factor is that these studies are not interchangeable. Conclusions drawn from the study of individuals cannot automatically be applied to collective groups because behaviors may change as the group size increases. Likewise, studies of large groups should not be used to make predictions about individuals because behaviors found in large groups may change as the group size decreases. Some results may well travel up and down the group size factor, but these must be tested and validated. Until then, findings should be plugged into the framework at the appropriate level of analysis, and any claims should be limited.

The second factor (column 2, traditional controls and independent variables) is considered essential within the CMC tradition. Any study of human behaviors and interactions must account for the background of those involved, if only because demographic categories may predict a large portion of the outcomes. This is to say that virtual world research should not be treated any less rigorously than other CMC work. Humans online are still humans, and the standard psychological issues of profile, personal background, and motivation found in other communication research will still apply. Early work on Internet use showed that personality (Kraut et al., 1996, 2002) and self-disclosure (Bargh, McKenna, & Fitzsimmons, 2002) had large effects on relationships and community. Likewise, the traditional tests of communications medium must be confronted. Although it is not always obvious to outsiders (and sometimes contentious among players), virtual world users communicate with each other through a wide variety of modalities ranging from text to audio (VoIP) to video, and in “locations” ranging from in-world to message boards to face-to-face meetings. The mediating value of these different channels is not well understood. Moreover, the players’ interactions are comprised not of mutually exclusive channels and modalities, but of mixes and combinations. One initial test suggested that the use of voice and text, compared with text only, caused significant differences in how much virtual group members trusted each other (Williams, Caplan, & Xiong, 2007).

Lastly, the new and burgeoning field of network science offers special appeal to virtual world research. Theorists have suggested that position within social networks has great predictive power for understanding motivations, group behaviors, information flows, and many other outcomes (Monge & Contractor, 2003). Noting the position of the subjects within a network thus becomes another key variable to identify when comparing studies. Network measures are more attractive still when unobtrusive behavioral data become available. Networks can be more easily built from virtual world data than from real-world data as they are based on recordable actions such as chatting or teaming.

The third factor (column 3, contextual and social architectural factors) introduces the most complexity and the biggest challenge for generalizability. To the new or inexperienced user, virtual worlds may seem to be all very similar: There is a space, some representation of the user, and some apparent goal. Yet a more careful examination reveals that even these apparent basics vary from one world to the next. Spaces can be text based, two dimensional, or three dimensional. Representations of the user might be as simple as a stick figure, a line of text, a hand holding an
object in the immediate foreground, or a fully detailed avatar of a figure. And while some worlds have clear goals, for example, slaying a dragon in *World of Warcraft*, others have no explicit goals at all, for example, the sandbox style of virtual worlds as exemplified by *Second Life* or *There*. In a “sandbox” space, there are no developer-created goals or storylines, and the users are typically given tools to create their own environment and goals. In more traditional game-based worlds, the developers create a fictional universe and back story and an underlying plotline that players follow. In these spaces, users have less explicit control over the environment or objects, although they frequently engage in playful and creative interactions (Castronova, 2005; Taylor, 2006).

Therefore, a strong assumption of this framework is that we cannot automatically treat virtual worlds as equivalent to one another. The reasons for this lie in the concepts of code and social architecture. Lessig (1999) first articulated the concept “code is law” as a way of drawing attention to the fact that behavior in virtual spaces is governed by software as much as by laws, markets, or social norms. In real space we take it for granted that we can walk but not fly, or talk with people who are in hearing distance. These abilities and limitations are not safe to assume in virtual spaces where the affordances and limitations of human actions and interactions are whatever the code says they are. Indeed, they may all be flipped. Code may also control who can interact with whom, when, and how. For example, some virtual worlds create subgroups where one set of people may communicate with only others in their subgroup. Some worlds have templates for social organization and hierarchies within groups. The sum total of these interaction affordances and limitations can be thought of as the “social architecture” of the space (Kim, 2000). Like regular architecture, it governs and impacts behaviors and interactions, but unlike a wall, bar, or podium, it is less apparent to the users.

If research from a highly restrictive social world is used to predict behaviors within a highly open social world, the potential for mistakes increases. Even within single games there are distinct spaces and versions of the rules. Among the most common is the difference between “PvE” (Player vs. Environment, in which players attack monsters, but not each other), “PvP” (Player vs. Player, in which players attack monsters and can also attack each other), and “RP” (Role Play, in which players are encouraged to behave and interact as if they were the imaginary avatar, rather than the player at the keyboard) servers. These differences could have a large effect on processes such as aggression, interpersonal dynamics, group effectiveness, and the motivations of the players who self-select into these spaces. Yet even when comparing two games with similar structures and limiting the analysis to PvP, care should be taken to identify the costs and risks. One game may offer a light penalty for being killed by another player, while another may have harsher consequences. For example, players of *Lineage II* who kill another player are flagged to the rest of the players, who are then given an incentive to hunt down the killer and possibly take a valuable item from him or her as a trophy. The defeated player may also lose an item and suffers a large time-based penalty (up to an hour) to regain his or her position.
In contrast, players of *Warcraft* who kill another player gain points for doing so, and the defeated player typically suffers a 1-minute penalty to regain his or her position. These architectural differences are likely to lead to different behaviors.

In some game worlds these rule sets are bright lines, while in other worlds they may be less clear or not zoned off from each other. Sandbox-style worlds—most popularly *Second Life*—represent a drastically reduced set of rules from the MMO model. *Second Life* is made up of thousands of distinct subcultures, whose activities are sometimes governed by code, but more often governed by local norms (Robbins & Bell, 2008). Until we have verified that outcomes are the same or different between various kinds of worlds and their social architectures, care should be taken not to generalize too widely. Certainly, there are many commonalities between the most popular spaces; fantasy-based MMOs make up over 85% of the virtual world market (White, 2008), and many feature similar game mechanics. However, a test of economic activity in these similar spaces might still find that they generate very different outcomes because their markets are organized differently. And because local cultures and code can have a large impact on study outcomes, participant observation work takes on a much larger significance than is the norm in communication research (Williams, 2005). Even within one virtual world there are likely to be many separate groups of players, each of which has its own quirks and ticks, and that may operate many of its functions outside of the world on Web sites, via phone calls, in face-to-face meetings, and so on (Taylor, 2006; Williams et al., 2006). Further, there are likely to be large regional and cultural differences across and within worlds, which are produced by teams from around the globe. Some worlds, such as *Final Fantasy XI* and *Second Life*, exist as internationally mixed environments, while others such as *World of Warcraft* split off independent, parallel, but possibly very different versions based on time zone, language, or local real-world culture.

The last factor (column 4) is basic directionality. It is not intrinsically different than the more general CMC-based work on online effects on community and psychology. Some virtual world research is concerned with the impacts that time online might have on our offline lives (Williams & Skoric, 2005), while other research is concerned with how our real lives impact what goes on within virtual worlds (Yee, 2007). If the patterns of more general Internet research (Wellman & Haythornthwaite, 2002) are borne out again in virtual world work, future investigations will examine the more cyclical process of how these spaces are embedded within the context of everyday life. If such findings are borne out in how virtual worlds work, there will be less of a separation between virtual space and real space; processes and cultures will be seen existing in an ecology made up of both the real and the virtual. For researchers interested in causal issues—especially those concerned with highly directional tests such as traditional media effect tests—this will be particularly important to identify.

Case study for the framework

Again, the major issue at hand is whether behaviors in virtual worlds map onto those in the real world. An important and innovative series of studies by Bailenson, Yee, and
colleagues at Stanford’s Communication Department and Virtual Human Interaction Lab can be used as a test case for the framework. One subset of findings and papers has outlined instances where the space has impacted human behaviors; the “Proteus Effect” demonstrates that assuming a particular kind of avatar (e.g., tall) leads to different perceptions and behaviors during interactions (Yee & Bailenson, 2007). Tall avatars are treated with the same preference as tall people are offline—whether the unseen user was tall or short. In this case, the answer to the original question is that the virtual world did map onto the real one, at least for impressions of appearance. That same team also found that many interpersonal dynamics from the real world (e.g., social distance and eye contact) map nearly perfectly into virtual spaces, including offline gender differences (Bailenson et al., 2005; Yee, Bailenson, Urbanek, Chang, & Merget, 2007)—although it was not clear if the user’s gender matched the avatar’s. Tellingly, the study’s goals were a paraphrase of the mapping principle: “to explore whether social norms of gender, interpersonal distance (IPD), and eye gaze transfer into virtual environments” (Yee et al., 2007, p. 115). These several findings can now be categorized and put into the framework to enable to meta-level statements about mapping.

For the first factor (group size), the work was concerned with the interpersonal, small-level realm of activity, typically focusing on dyads. It is unclear whether the same findings would persist as group sizes increase. Would individual “physical” appearance still lead to differences in liking, affect, and so on as group sizes increased to 5, 30, or 2,000? Perhaps they would lessen, or widen. Bailenson and Yee’s work in this area is in many ways a product of the earlier work done on virtual reality environments—computer-created worlds with little interaction between people (Rheingold, 1992). Because virtual worlds have much in common with virtual reality (three-dimensional avatars and computer-created environments), it is tempting to apply the body of results from virtual reality (VR) to the mapping principle. And indeed, there is a tradition of immersive environment research within psychology that shows effects on small scales and in limited environments (Blascovich et al., 2002). In behaviors as varied as compassion (Gillath, McCall, Shaver, & Blascovich, 2008), leadership (Hoyt & Blascovich, 2003), ostracism (Williams, Cheung, & Choi, 2000), and racism (Dotsch & Wigboldus, 2008), this work has shown mapping-style results with dyads, where offline expectations were met in virtual spaces. However, the key difference is that much of this research involves humans and computer-based agents (Dotsch & Wigboldus, 2008; Gillath et al., 2008; Guadagno, Blascovich, Bailenson, & McCall, 2007) rather than the human–human interactions that are the explicit goal of the Stanford group. Also, these behaviors may not apply to larger groups or (as the third factor will demonstrate) to larger scale and more open-ended social settings such as MMOs or large avatar-based sandbox worlds. Although the researchers sometimes suggest that the work has high ecological validity (Gillath et al., 2008), this should not be confounded with the mapping of human behaviors online and off. And because mapping is about humans, involving computer-driven avatars as the key source of effects clearly falls outside of the research agenda. So, there is a key
D. Williams

The Mapping Principle

distinction to be made when the studies use computer agents rather than real people (confederates or otherwise) driving the avatars. The outcomes may be the same as reactions to human-controlled avatars, or not. Research has suggested that humans work hard to learn whether an avatar is human and may react differently when it is not (Nass & Gong, 2000), with visceral negative reactions if they feel as if they are trying to be tricked (Mori, 1970; Serviss, 2005). Until this work is demonstrated to have offline predictive validity, these forms of study contribute to our understanding of presence (Lee, 2004) and our interactions with virtual agents, but not to the online–offline mapping concept.

For the second factor (controls and traditional independent variables), the tests were not focused on the profiles of the users. This is perfectly reasonable as the intent of the experiments was to establish the presence of the phenomenon, not to explore the nuances right away. Only gender was examined, leaving aside possible motivational or personality-based differences such as extroversion or social control. The communications medium was also relatively poor, with most users relying on text for conversations. Perhaps an awareness or impression of real-life characteristics disclosed by the use of voice would change the outcomes of the research, for example, the finding that female–female avatar dyads remained physically close might change if one of the females revealed their real-world maleness by speaking in a deep voice. It is also conceivable that the relative position of avatars within some social hierarchy or network might impact the amount of deference or familiarity felt, which might impact eye gaze or closeness.

For the third factor (social architecture), it is important to contextualize exactly where the studies took place, what the social architectures were, and how they might differ from other virtual worlds. The 2007 eye gaze study (Yee et al., 2007) examined naturally occurring (if such a thing can be said of virtual spaces) interactions within Second Life, while the 2005 eye gaze study used undergraduate volunteers in a more controlled lab setting (Bailenson et al., 2005). Because both found similar eye gaze results from different virtual settings, the power of the conclusions is stronger than if had been tested in just one space. However, as has been mentioned earlier, Second Life is a “sandbox”-style virtual world, with great freedom of movement and choice. Second Life, and the lab setting are substantially different from a game-based virtual world such as Club Penguin or Warhammer Online, which differ in several ways. Most obviously, those spaces are filled with more stock fantasy characters such as penguins, orcs, and knights, whereas Second Life tends to the slightly more human (exceptions certainly occur). Would penguin avatars have the same eye gaze outcomes, or would controlling a nonhuman avatar change the mechanism driving the outcomes? Would being in a world with violence or no violence make a difference? Would the presence of game-based tasks change these interactions, that is, will players on a mission to slay the evil dragon have the same kinds of interpersonal outcomes as users relaxing in a virtual nightclub?

For the final factor (directionality), this series of research experiments can be described as exploring whether the real impacts the virtual. That is, in asking what
real-life interpersonal behaviors carry over into virtual worlds, the causal arrow points from the real to the virtual. These studies are not exploring whether the virtual impacts the real, or whether the two realms might end up reinforcing one another.

To sum up the findings from the meta-level perspective of the framework, the authors made a substantial contribution by establishing the presence of the phenomenon, but we cannot interpret their work as automatically applying to difference group sizes, for all kinds of people, in all virtual settings, with all communication modalities, and in all kinds of networks. Rather, their work should be taken as an important baseline, or starting point. As future researchers tackle these issues of virtual interpersonal behaviors, they would contribute most by examining other group sizes, exploring different kinds of users, looking in different kinds of spaces, and asking whether these same findings might occur in other causal directions. As each factor is tackled and the results added into the framework, our overall understanding of interpersonal, avatar-based behavior will gain nuance and power.

Considerations for future work

Recent work has begun to tap into not only the small-group dimensions of virtual worlds, but to start exploring the community and society level as well, typically within communication theories. The XEROX PARC team has begun analyzing entire servers of players, charting interactions and group dynamics with software bots and spiders (Ducheneaut et al., 2006a, 2006b). The EverQuest II studies use anonymous unobtrusive behavioral data to study the communication practices of both individuals and aggregates within a fantasy setting (Williams, Consalvo, Caplan, & Yee, 2009; Williams et al., 2008). Such methods allow data retrieval and analysis on scales of immense size. Typically, large-scale analysis in social science relies on estimates, surveys, and sampling, while small-scale work utilizes direct observations such as controlled experiments, participant observation, and ethnography. Although both ends of the scale spectrum are useful, they also have well-known advantages and disadvantages. Small-scale work often risks sampling biases and generalizability issues, while large-scale work rarely incorporates detail and particular social contexts. In other words, one end of the spectrum typically suffers from internal validity challenges, while the other typically suffers from external ones. For both, human subjects are usually aware of the research being conducted, and so the natural attitudinal and behavioral responses collected from human subjects are often inseparable from those induced by Hawthorne effects (Cook & Campbell, 1979) and social desirability.

The new methods being used by virtual world researchers can reduce or eliminate these problems. Data for an entire population, instead of a sample, have been collected and accessed. And because all data are collected, there is no need for estimation or sampling—given enough storage space and computing power, every single action, transaction, and interaction can be tracked, accumulated, and analyzed. Virtual
worlds are excellent sites for observation and data collection, where researchers become nearly omniscient about every aspect of player behaviors, at least within the virtual world. In addition, this recording happens without the players’ knowledge, so demand conditions cannot be a factor (Webb et al., 1966). Practically speaking, this is an unobtrusive methodology that could not have existed before.

If there is an immediate drawback to using unobtrusive approaches for virtual world research, it is that there is rarely an opportunity to introduce control—unless the researcher becomes fortunate enough to work with a world operator to do so, or until such tools become more accessible to universities. Natural experiments may offer some potential, as when a commercial developer introduces a change into a virtual world that relates to a theoretical question, or when a new world copy comes online—as was the case for Castronova et al. (2009). Tinkering and altering the very structure of a world has obvious appeal to experimentalists, but we may not always have a full appreciation of the moving parts involved. Although virtual world researchers have become recently aware of the immense power of social architectures, code, and rule sets to govern and influence human behaviors (Kim, 2000; Lessig, 1999), these are hardly new concepts to urban planners, architects, anthropologists, and the like. Indeed, it is a hallmark (often contested) of those many fields that structure influences behaviors.

Social scientists and humanists of all stripes might find fertile ground to test, replicate, and extend the many theories of human behavior that are too costly or unwieldy to perform in the real world. Perhaps urban planners could model traffic flows, community interaction, and commerce patterns in a virtual setting rather than rolling out hotly contested subdivisions. Perhaps political scientists examining trust and social diversity could see the implications of changes in the law without having to persuade actual legislators—instead simply adjusting a few lines of code to change the rules and incentives of a community. Communication researchers might extend and advance our basic interpersonal and mass communication theories within these complex and vast new networks. The possibilities are both exciting and daunting, but there are two caveats. First, the mapping principle has to be tested for internal and external validity before any result can be said to truly “matter” beyond the confines of virtual spaces. A virtual result is just that, and until there is a mapped real-world parallel of conditions, incentives, and assumptions, the result will remain relatively trivial. Second, the ethics of virtual research should be no different than real-world ones. Milgram’s shock experiments were essentially virtual in nature as well (Milgram, 1963), and while they provided deep insight into human nature, they did so at a high ethical cost. Humans in virtual spaces are still humans, and their psychology and life contexts are still important to protect.

Guidance for future work on virtual worlds

The framework advanced here is based on the discipline of communication, but it is adaptable to any field. Without being proscriptive about the kinds of questions that
must be asked or the theoretical frameworks that must be used, it is still useful to lay out a series of steps that apply to any inquiry into virtual worlds. Practitioners could consider this a checklist of sorts for a research program. Step 1 is to begin with a theoretical orientation, regardless of the discipline. Without theoretical guidance, there can be no theory testing, building, or refinement. For example, a communication scholar interested in representation and cultivation theory can tap that robust literature to generate hypotheses and research questions.

Step 2 is to simply enter the virtual space. No matter what the methodology eventually used in the work, the researcher must develop some basic understanding of the practices and local contexts of the world in question. No one—experimentalist, survey methodologist, ethnographer, and so on—can do solid work on virtual worlds without having some firsthand knowledge of the place. It would be akin to a film scholar not watching the movie, the ethnographer not talking with people, or the physicist never entering the lab. This step includes coming to an understanding of the various contextual factors outlined in Table 1—how big is the world, what are the incentives and common behaviors in it, what are the local norms, and so on? The cultivation researcher might learn how people are represented by avatars and get a sense of what meanings players ascribe to them within the local context.

Step 3 is to choose the level of analysis. Is the research concerned with individuals, small groups, whole cultures, and so on? With the knowledge gained in the second step, what are the labels used to describe these groups? Our hypothetical cultivation researcher would decide if the unit of analysis should be the player, the avatar (there may be multiple avatars for each player), the local community, the server, or the entire game world.

Step 4 is primarily for researchers interested in causal models, but can be considered for exploratory research as well. Is the key question how the real impacts the virtual, or vice versa, or some cycle between the two? With that understood, what variables now need to be considered? Which will function as mediators, and which as the dependent variables? Table 1 offers a suite of common controls, but there will be others suggested by the guiding theory. Perhaps the cultivation researcher would decide that the online world might impact offline perceptions and build the causal model in that direction.

Step 5 is where the theory and directionality are applied to the particular world in question. It is the operationalization step, and it is more complex than in traditional research. How can the existing theory—which was likely not constructed for virtual worlds research—be applied to the human activity in this space? This involves translating and updating the theory to the new context. Nearly by definition, theories that survive such adaptations will be more robust than those that do not. When the theory has been reconsidered for the new space, are their obvious measures for its basic parts? Can they be constructed if they do not already exist? The cultivation researcher might use previous measures of representation (Mastro, Behm-Morawitz, & Ortiz, 2007), or crime (Gerbner et al., 1994), or other common tools, updated and adapted for the virtual environment. If the measures can be had, these are the
inputs into the new model, and operationalization is possible (Williams, 2006). From there, the research follows the familiar standards of considering the ethics, examining the data, considering the theoretical implications, and then testing and retesting variations to uncover nuances. In accordance with the framework supplied here, all virtual worlds work should be compared and slotted into the various columns and categories in Table 1 so that we might start to synthesize a larger understanding of human activity across these spaces.

There is one last issue virtual methodologists in particular might consider. If the tests are validated, undertaken with care and rigor, and then find results that challenge some existing theory, it is nearly a given that the method will be ignored or attacked. This is the norm in modern science (Kuhn, 1961). However, Kuhn notes that leaps in progress are always made when there is a gap between what is expected and what is found. Done conservatively, virtual methods have the potential to reveal many such gaps, and practitioners should be prepared for the reaction.

In conclusion, the field of virtual worlds research is poised to take off. To newcomers or to laypersons, virtual worlds are likely a black box. World of Warcraft and Habbo Hotel are no different to those who do not understand the conventions and options found from world to world. Unlike television or books, which nearly everyone understands have different forms, genres, and audiences, virtual worlds are not nearly as well understood. Moreover, the differences between worlds are made more complex by the presence of very different social architectures, interactivity, and user-generated content. Books, for example, are generally not rewritten by the other readers during the reading process. Although they may be interpreted in quite different ways, the texts generally do not change, whereas in virtual worlds the other users and players are rewriting and editing the space all the time. It is up to researchers to educate the public and ourselves about the key distinctions between spaces. Otherwise, it will be easy for journalists or novice researchers to find a result and to make large and irresponsible claims to a public that may not know better. This current work has suggested some of the many ways in which we might advance the field of virtual world research responsibly with scientific rigor, coordination, and systematic inquiry.

References

虚拟世界日益普及和引起学者们的关注，和他们对其研究价值的肯定。另外，学术界出现了一个全新的研究形式，即利用虚拟世界研究现实世界中的行为。若该方法有效，对于传播学者而言利用虚拟世界作为“皮氏培养皿”即将成为可能。然而，有几个必要条件首先要得到满足：最根本的是确立一个“映射原理”，或曰一个空间的行为在何种程度上与另一个空间的行为相符。本文概述了映射原理，阐述了对其潜在的误用，并系统地探索了映射原理有效性和可靠性的可能，并通过阐述这些问题提出了对于映射原理的研究框架。
Le principe d'application et un cadre de recherche pour les mondes virtuels

La popularité des mondes virtuels a explosé et les chercheurs considèrent aujourd'hui qu'ils méritent d'être étudiés en eux-mêmes. Un secteur de recherche plus radical est également apparu, qui propose d'utiliser les mondes virtuels pour étudier les comportements dans le monde « réel ». Si elle s'avérait valide, cette proposition permettrait aux chercheurs en communication d'utiliser les mondes virtuels comme des « boîtes de Pétri ». Toutefois, plusieurs conditions indispensables doivent d'abord être respectées. La plus fondamentale est la création d'un « principe d'application », c'est-à-dire qu'il faut déterminer jusqu'à quel point des comportements manifestés dans un espace sont en accord avec des comportements manifestés dans un autre. Cet article expose brièvement le principe d'application, en explique les possibles mauvais usages et offre une exploration systématique des enjeux de validité et de fiabilité. Une fois ces éléments exposés, un cadre de recherche pour l'application est ensuite présenté.
Das Prinzip der Abbildung und ein Forschungsprogramm für virtuelle Welten

The mapping principle, and a research framework for virtual worlds

조사원칙, 그리고 가상세계들에 대한 연구프레임

요약

가상세계들은 갈수록 대중성을 확보하고 있으며, 연구할 가치가 있는 것으로
연구자들로부터 관심을 불러일으키고 있다. 하나의 추가적인, 더욱 급진적인 형태의
학문이 또 등장하였는데, 이는 가상세계를 현실세계행위들을 연구하기 위하여
사용하려는 것이다. 이것이 유효하다면, 이는 가상세계들을 커뮤니케이션학자들을 위한
페트리 접시들로 사용할 수 있다. 그러나, 이를 위해서는 여러가지 필요조건들이 있다.
가장 기초적인 것은 조사원칙을 설립하는 것이며, 하나의 공간에서의 행위들이
어느정도로 다른 공간에서의 행위들과 일치하는가의 정도를 확실히 하는 것이다. 본
논문은 이러한 조사원칙을 가능화하고, 잠재적인 오용에 대해 설명하고, 그리고 유용성과
의존성 이슈들에 대한 체계적인 설명을 제공하였다. 이러한 설명을 통해 조사를 위한 연구
프레임이 제시되었다.
El Principio del Mapeo

Resumen

Los mundos virtuales han explotado en popularidad y han llamado la atención de los investigadores como merecedores de ser estudiados por su derecho propio. Una forma adicional, más radical de erudición ha emergido también, a saber el uso de los mundos virtuales para estudiar los comportamientos del mundo real. Si válido, esto permitiría usar los mundos virtuales como “placa de Petri” por parte de los estudiosos de la comunicación. Sin embargo, hay varias condiciones necesarias que primero deben ser cumplidas. La más fundamental es el establecimiento de un “principio de mapeo,” o el punto en el cual los comportamientos de un espacio son consistentes con los comportamientos en otro. Este artículo bosqueja el principio del mapeo, explica los malos usos potenciales, y ofrece una exploración sistemática de los asuntos de validez y credibilidad. Con esto expuesto, un marco de investigación sobre el mapeo es presentado.